123 research outputs found

    Sleep-like slow oscillations improve visual classification through synaptic homeostasis and memory association in a thalamo-cortical model

    Full text link
    The occurrence of sleep passed through the evolutionary sieve and is widespread in animal species. Sleep is known to be beneficial to cognitive and mnemonic tasks, while chronic sleep deprivation is detrimental. Despite the importance of the phenomenon, a complete understanding of its functions and underlying mechanisms is still lacking. In this paper, we show interesting effects of deep-sleep-like slow oscillation activity on a simplified thalamo-cortical model which is trained to encode, retrieve and classify images of handwritten digits. During slow oscillations, spike-timing-dependent-plasticity (STDP) produces a differential homeostatic process. It is characterized by both a specific unsupervised enhancement of connections among groups of neurons associated to instances of the same class (digit) and a simultaneous down-regulation of stronger synapses created by the training. This hierarchical organization of post-sleep internal representations favours higher performances in retrieval and classification tasks. The mechanism is based on the interaction between top-down cortico-thalamic predictions and bottom-up thalamo-cortical projections during deep-sleep-like slow oscillations. Indeed, when learned patterns are replayed during sleep, cortico-thalamo-cortical connections favour the activation of other neurons coding for similar thalamic inputs, promoting their association. Such mechanism hints at possible applications to artificial learning systems.Comment: 11 pages, 5 figures, v5 is the final version published on Scientific Reports journa

    Towards biologically plausible Dreaming and Planning in recurrent spiking networks

    Full text link
    Humans and animals can learn new skills after practicing for a few hours, while current reinforcement learning algorithms require a large amount of data to achieve good performances. Recent model-based approaches show promising results by reducing the number of necessary interactions with the environment to learn a desirable policy. However, these methods require biological implausible ingredients, such as the detailed storage of older experiences, and long periods of offline learning. The optimal way to learn and exploit word-models is still an open question. Taking inspiration from biology, we suggest that dreaming might be an efficient expedient to use an inner model. We propose a two-module (agent and model) spiking neural network in which "dreaming" (living new experiences in a model-based simulated environment) significantly boosts learning. We also explore "planning", an online alternative to dreaming, that shows comparable performances. Importantly, our model does not require the detailed storage of experiences, and learns online the world-model and the policy. Moreover, we stress that our network is composed of spiking neurons, further increasing the biological plausibility and implementability in neuromorphic hardware

    Beyond spiking networks: the computational advantages of dendritic amplification and input segregation

    Full text link
    The brain can efficiently learn a wide range of tasks, motivating the search for biologically inspired learning rules for improving current artificial intelligence technology. Most biological models are composed of point neurons, and cannot achieve the state-of-the-art performances in machine learning. Recent works have proposed that segregation of dendritic input (neurons receive sensory information and higher-order feedback in segregated compartments) and generation of high-frequency bursts of spikes would support error backpropagation in biological neurons. However, these approaches require propagating errors with a fine spatio-temporal structure to the neurons, which is unlikely to be feasible in a biological network. To relax this assumption, we suggest that bursts and dendritic input segregation provide a natural support for biologically plausible target-based learning, which does not require error propagation. We propose a pyramidal neuron model composed of three separated compartments. A coincidence mechanism between the basal and the apical compartments allows for generating high-frequency bursts of spikes. This architecture allows for a burst-dependent learning rule, based on the comparison between the target bursting activity triggered by the teaching signal and the one caused by the recurrent connections, providing the support for target-based learning. We show that this framework can be used to efficiently solve spatio-temporal tasks, such as the store and recall of 3D trajectories. Finally, we suggest that this neuronal architecture naturally allows for orchestrating ``hierarchical imitation learning'', enabling the decomposition of challenging long-horizon decision-making tasks into simpler subtasks. This can be implemented in a two-level network, where the high-network acts as a ``manager'' and produces the contextual signal for the low-network, the ``worker''.Comment: arXiv admin note: substantial text overlap with arXiv:2201.1171

    Scaling of a large-scale simulation of synchronous slow-wave and asynchronous awake-like activity of a cortical model with long-range interconnections

    Full text link
    Cortical synapse organization supports a range of dynamic states on multiple spatial and temporal scales, from synchronous slow wave activity (SWA), characteristic of deep sleep or anesthesia, to fluctuating, asynchronous activity during wakefulness (AW). Such dynamic diversity poses a challenge for producing efficient large-scale simulations that embody realistic metaphors of short- and long-range synaptic connectivity. In fact, during SWA and AW different spatial extents of the cortical tissue are active in a given timespan and at different firing rates, which implies a wide variety of loads of local computation and communication. A balanced evaluation of simulation performance and robustness should therefore include tests of a variety of cortical dynamic states. Here, we demonstrate performance scaling of our proprietary Distributed and Plastic Spiking Neural Networks (DPSNN) simulation engine in both SWA and AW for bidimensional grids of neural populations, which reflects the modular organization of the cortex. We explored networks up to 192x192 modules, each composed of 1250 integrate-and-fire neurons with spike-frequency adaptation, and exponentially decaying inter-modular synaptic connectivity with varying spatial decay constant. For the largest networks the total number of synapses was over 70 billion. The execution platform included up to 64 dual-socket nodes, each socket mounting 8 Intel Xeon Haswell processor cores @ 2.40GHz clock rates. Network initialization time, memory usage, and execution time showed good scaling performances from 1 to 1024 processes, implemented using the standard Message Passing Interface (MPI) protocol. We achieved simulation speeds of between 2.3x10^9 and 4.1x10^9 synaptic events per second for both cortical states in the explored range of inter-modular interconnections.Comment: 22 pages, 9 figures, 4 table
    • …
    corecore